Copied to
clipboard

G = C28.2C42order 448 = 26·7

2nd non-split extension by C28 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.2C42, C4⋊C44Dic7, C14.13C4≀C2, C28.8(C4⋊C4), (C2×C28).7Q8, (C4×Dic7)⋊5C4, C4.Dic73C4, C4.2(C4×Dic7), C72(C426C4), (C2×C4).126D28, (C2×C28).488D4, C4.2(C4⋊Dic7), C4.46(D14⋊C4), (C2×C4).24Dic14, C42⋊C2.2D7, (C22×C14).43D4, C28.61(C22⋊C4), C4.30(Dic7⋊C4), (C22×C4).324D14, C23.47(C7⋊D4), C22.18(D14⋊C4), C2.1(D42Dic7), C22.4(Dic7⋊C4), C14.8(C2.C42), C2.9(C14.C42), (C22×C28).121C22, C22.28(C23.D7), (C7×C4⋊C4)⋊6C4, (C2×C4).68(C4×D7), (C2×C4×Dic7).1C2, (C2×C14).4(C4⋊C4), (C2×C28).57(C2×C4), (C2×C4).36(C2×Dic7), (C2×C4.Dic7).8C2, (C2×C4).268(C7⋊D4), (C7×C42⋊C2).2C2, (C2×C14).90(C22⋊C4), SmallGroup(448,89)

Series: Derived Chief Lower central Upper central

C1C28 — C28.2C42
C1C7C14C28C2×C28C22×C28C2×C4.Dic7 — C28.2C42
C7C14C28 — C28.2C42
C1C2×C4C22×C4C42⋊C2

Generators and relations for C28.2C42
 G = < a,b,c | a28=c4=1, b4=a14, bab-1=a-1, cac-1=a15, cbc-1=a21b >

Subgroups: 404 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, Dic7, C28, C28, C2×C14, C2×C14, C2×C42, C42⋊C2, C2×M4(2), C7⋊C8, C2×Dic7, C2×C28, C2×C28, C22×C14, C426C4, C2×C7⋊C8, C4.Dic7, C4.Dic7, C4×Dic7, C4×Dic7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×Dic7, C22×C28, C2×C4.Dic7, C2×C4×Dic7, C7×C42⋊C2, C28.2C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D7, C42, C22⋊C4, C4⋊C4, Dic7, D14, C2.C42, C4≀C2, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C426C4, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C14.C42, D42Dic7, C28.2C42

Smallest permutation representation of C28.2C42
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 83 30 86 15 69 44 100)(2 82 31 85 16 68 45 99)(3 81 32 112 17 67 46 98)(4 80 33 111 18 66 47 97)(5 79 34 110 19 65 48 96)(6 78 35 109 20 64 49 95)(7 77 36 108 21 63 50 94)(8 76 37 107 22 62 51 93)(9 75 38 106 23 61 52 92)(10 74 39 105 24 60 53 91)(11 73 40 104 25 59 54 90)(12 72 41 103 26 58 55 89)(13 71 42 102 27 57 56 88)(14 70 43 101 28 84 29 87)
(1 100 51 62)(2 87 52 77)(3 102 53 64)(4 89 54 79)(5 104 55 66)(6 91 56 81)(7 106 29 68)(8 93 30 83)(9 108 31 70)(10 95 32 57)(11 110 33 72)(12 97 34 59)(13 112 35 74)(14 99 36 61)(15 86 37 76)(16 101 38 63)(17 88 39 78)(18 103 40 65)(19 90 41 80)(20 105 42 67)(21 92 43 82)(22 107 44 69)(23 94 45 84)(24 109 46 71)(25 96 47 58)(26 111 48 73)(27 98 49 60)(28 85 50 75)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,83,30,86,15,69,44,100)(2,82,31,85,16,68,45,99)(3,81,32,112,17,67,46,98)(4,80,33,111,18,66,47,97)(5,79,34,110,19,65,48,96)(6,78,35,109,20,64,49,95)(7,77,36,108,21,63,50,94)(8,76,37,107,22,62,51,93)(9,75,38,106,23,61,52,92)(10,74,39,105,24,60,53,91)(11,73,40,104,25,59,54,90)(12,72,41,103,26,58,55,89)(13,71,42,102,27,57,56,88)(14,70,43,101,28,84,29,87), (1,100,51,62)(2,87,52,77)(3,102,53,64)(4,89,54,79)(5,104,55,66)(6,91,56,81)(7,106,29,68)(8,93,30,83)(9,108,31,70)(10,95,32,57)(11,110,33,72)(12,97,34,59)(13,112,35,74)(14,99,36,61)(15,86,37,76)(16,101,38,63)(17,88,39,78)(18,103,40,65)(19,90,41,80)(20,105,42,67)(21,92,43,82)(22,107,44,69)(23,94,45,84)(24,109,46,71)(25,96,47,58)(26,111,48,73)(27,98,49,60)(28,85,50,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,83,30,86,15,69,44,100)(2,82,31,85,16,68,45,99)(3,81,32,112,17,67,46,98)(4,80,33,111,18,66,47,97)(5,79,34,110,19,65,48,96)(6,78,35,109,20,64,49,95)(7,77,36,108,21,63,50,94)(8,76,37,107,22,62,51,93)(9,75,38,106,23,61,52,92)(10,74,39,105,24,60,53,91)(11,73,40,104,25,59,54,90)(12,72,41,103,26,58,55,89)(13,71,42,102,27,57,56,88)(14,70,43,101,28,84,29,87), (1,100,51,62)(2,87,52,77)(3,102,53,64)(4,89,54,79)(5,104,55,66)(6,91,56,81)(7,106,29,68)(8,93,30,83)(9,108,31,70)(10,95,32,57)(11,110,33,72)(12,97,34,59)(13,112,35,74)(14,99,36,61)(15,86,37,76)(16,101,38,63)(17,88,39,78)(18,103,40,65)(19,90,41,80)(20,105,42,67)(21,92,43,82)(22,107,44,69)(23,94,45,84)(24,109,46,71)(25,96,47,58)(26,111,48,73)(27,98,49,60)(28,85,50,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,83,30,86,15,69,44,100),(2,82,31,85,16,68,45,99),(3,81,32,112,17,67,46,98),(4,80,33,111,18,66,47,97),(5,79,34,110,19,65,48,96),(6,78,35,109,20,64,49,95),(7,77,36,108,21,63,50,94),(8,76,37,107,22,62,51,93),(9,75,38,106,23,61,52,92),(10,74,39,105,24,60,53,91),(11,73,40,104,25,59,54,90),(12,72,41,103,26,58,55,89),(13,71,42,102,27,57,56,88),(14,70,43,101,28,84,29,87)], [(1,100,51,62),(2,87,52,77),(3,102,53,64),(4,89,54,79),(5,104,55,66),(6,91,56,81),(7,106,29,68),(8,93,30,83),(9,108,31,70),(10,95,32,57),(11,110,33,72),(12,97,34,59),(13,112,35,74),(14,99,36,61),(15,86,37,76),(16,101,38,63),(17,88,39,78),(18,103,40,65),(19,90,41,80),(20,105,42,67),(21,92,43,82),(22,107,44,69),(23,94,45,84),(24,109,46,71),(25,96,47,58),(26,111,48,73),(27,98,49,60),(28,85,50,75)]])

88 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K···4R7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28AP
order12222244444444444···4777888814···1414···1428···2828···28
size111122111122444414···14222282828282···24···42···24···4

88 irreducible representations

dim11111112222222222224
type+++++-++-+-+
imageC1C2C2C2C4C4C4D4Q8D4D7Dic7D14C4≀C2Dic14C4×D7D28C7⋊D4C7⋊D4D42Dic7
kernelC28.2C42C2×C4.Dic7C2×C4×Dic7C7×C42⋊C2C4.Dic7C4×Dic7C7×C4⋊C4C2×C28C2×C28C22×C14C42⋊C2C4⋊C4C22×C4C14C2×C4C2×C4C2×C4C2×C4C23C2
# reps1111444211363861266612

Matrix representation of C28.2C42 in GL4(𝔽113) generated by

15000
989800
00024
00809
,
1200
711200
009876
00015
,
11211100
1100
00150
00015
G:=sub<GL(4,GF(113))| [15,98,0,0,0,98,0,0,0,0,0,80,0,0,24,9],[1,7,0,0,2,112,0,0,0,0,98,0,0,0,76,15],[112,1,0,0,111,1,0,0,0,0,15,0,0,0,0,15] >;

C28.2C42 in GAP, Magma, Sage, TeX

C_{28}._2C_4^2
% in TeX

G:=Group("C28.2C4^2");
// GroupNames label

G:=SmallGroup(448,89);
// by ID

G=gap.SmallGroup(448,89);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,184,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^28=c^4=1,b^4=a^14,b*a*b^-1=a^-1,c*a*c^-1=a^15,c*b*c^-1=a^21*b>;
// generators/relations

׿
×
𝔽